
J .  Fluid Mech. (1972), vol. 51, part 1, pp. 15-32 

Printed in Great Britain 
15 

The structure and stability of vortex rings 

By T. MAXWORTHY 
Departments of Aerospace and Mechanical Engineering, University of 

Southern California, Los Angeles, California, U.S.A. 

(Reoeived 24 August 1970 and in revised form 19 July 1971) 

A series of observations on experimentally produced vortex rings is described. 
The flow field, ring velocity and growth rate were observed using dye and 
hydrogen-bubble techniques. It was found that stable rings are formed and 
grow in such a way that most of their vorticity is distributed throughout a fluid 
volume which is larger than and moving with the visible dye core. 

As the vorticity diffuses out of this moving body of fluid into the outer irrota- 
tional fluid, it has two effects. It causes some of the fluid, with newly acquired 
vorticity, to be entrained into the interior of the bubble, while the rest is left 
behind and accounts for the appearance of ring vorticity in a wake. It was 
found that the velocity of translation U of these stable rings varies as t-l, a t  
high Reynolds number, where t is the time measured from the start of the motion 
at  a virtual origin at  downstream infinity. A simple theoretical model is presented 
which explains all of these features of the observed stable flow. Rings of even 
higher Reynolds number become unstable and shed significantly more vorticity 
into the wake. Under some circumstances a new more stable vortex emerges 
from this shedding process and continues with less vorticity than before. 
Eventually, the ring motion ceases as all of its vorticity is deposited into the 
wake and is spread by viscous diffusion. Observations of the interaction between 
two nearly identical rings travelling a common path showed that, contrary to 
popular belief, rings do not pass back and forth through one another, but that 
the rearward one becomes entrained into the forward one. Only when the rear- 
ward ring has a much higher velocity than its partner can it emerge from the 
joining process and leave a slower-moving ring behind. 

1. Introduction 
The basic characteristics of vortex rings, as they are understood at the present 

time, are described in Lamb (1945), Prandtl & Tietjens (1934), Sommerfeld 
(1950) and Batchelor (1967) for example. More recently Saffman (1970) has 
reopened the discussion on the theoretical aspects of the problem and in par- 
ticular, the effects of viscosity. 

Elementary considerations show that there is a basic inconsistency between 
the classical models and even the most casual observations of the motions of 
real vortex rings. The latter show that the ring slows down and grows to larger 
overall diameter as time progresses. Kelvin’s model (Lamb 1945, p. 241) has 
neither of these features. Saffman’s (1970) extension of this picture allows the 



16 IT. Hmworthy 

initially thin core of vorticity to grow by viscous diffusion and a slowing of the 
ring is predicted. Thus 

u K =-(log-- 8r 0.558 + 0 (2) vt 4 1. 
27rr (4vt)3 

Because the core remains thin it is not possible for the circulation K to change. 
The impulse I of the ring is also constant and given by 

I = nr2K. (2) 

However, observations show that r increases with time and a contradiction is 
reached if we wish to retain the thin-cored model. Either I must increase or K 
must decrease. The former is not possible because there are no body forces 
available to bring it about. The latter is also impossible unless, at least, we 
allow the size of the core to grow until vorticity is able to cancel, by viscous 
diffusion, at the centre-line of the ring. Saffman (1970), by order-of-magnitude 
arguments, calculated that 

for this circumstance, where r,, is the initial radius of the ring and k and k’ are 
constants. His model contains some of the features of the one to be described in 
the following sections; in particular, we find that the vorticity is not confined to 
a thin core in vortex rings produced by a simple vortex generator. 

Reynolds (1876) appears to have been the f3st to observe correctly the flow 
field of a real vortex ring. He noted that they slow down and grow because 
“ . . .they are continually adding to their bulk water taken up from that which 
surrounds them and with which their forward momentum has to be shared”. 
Since that time, numerous experiments and various refinements in interpretation 
have been forthcoming. Most of these have been hampered by an incomplete 
knowledge of the flow field and have ignored the important result that Reynolds 
obtained.$ As a result, misinterpretations have arisen which should be corrected. 
Recently there have been suggestions that vortex rings may be used to transport 
chimney wastes to great altitudes and that vortex rings may form from the 
trailing vortices behind aircraft and from flares in the solar atmosphere. All of 
this has created a need to perform more complete observations on experimentally 
produced rings. After performing the experiments described in the main body of 
this paper, it  also becomes apparent that the observed entrainment process 
could be of great importance in understanding the mechanism by which turbulent 
interfaces grow and remain sharp. In  fact, by regarding the vortex ring as a 
model turbulent eddy which, when it reaches the turbulent-laminar interface, 
is able to entrain fluid by a process involving viscous diffusion, a new attack on 
one of the more interesting a,spects of turbulent motion might be possible. 

u 2! ( I / k )  (Ti  + k’vt)% 

-f U and r are the velocity translation and radius of the ring, respectively. K is the 
circulation around the thin core, v is the kinematic viscosity of the fluid and t the time. 

$ A paper by Krutzsch (1939), discovered during the preparation of the revised draft 
of this paper, also shows the entrainment process very clearly, but draws no conclusion 
as to the mechanisms causing it. 
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2. Apparatus 
The apparatus used in the present experiment was very simple. It consisted 

(figure 1) of a &in. diameter, sharp-edged hole drilled through a thin sheet of 
brass and connected through a manifold to a hypodermic syringe (figure 1 (a)) 
or a sheet-rubber percussion head (figure l(b)).  This device was placed in a 
12-gallon aquarium. The rings were produced by ejecting a puff of fluid through 
the hole and observed using dye and hydrogen bubbles. Of the experimental 
parameters a t  our disposal, viz. fluid viscosity, hole diameter and shape, volume 
of fluid displaced into the tank and time taken to displace this volume of fluid, 
only the last two were varied over a wide range. The hole diameter was doubled 
for one set of tests and an obstacle (figure 1 (c)) was placed in the centre of the 
hole for another set; no attempt was made to cover a wide range of exit conditions 
once the major features of the flow had been discovered. 

Hypodermic 

Rubber diaphragm 

FIGURE 1. Apparatus. (a) Plunger, manifold and hydrogen-bubble wires installed in the 
aquarium. (6 )  Alternative form of device to apply am impulse to the ejected fluid; a rubber 
diaphragm is glued to the top of the manifold. (c) Alternative hole geometry with a centre 
body to test a stability oriterion for the vortex rings. 

3. Experimental results on laminar vortex rings? 
Vortex ring formation was initiated by gently pushing the plunger of the 

syringe until a predetermined volume of fluid had been released. During this 
time a short jet of dyed fluid emerged from the manifold and immediately rolled 
up into a body of moving fluid which initially took the form of a oblate spheroid. 
Within this region the dye had deformed into a thin sheet with a spiral structure 
when viewed in a meridional plane. The dye sheet also closed over the nose of 
the region indicating a front stagnation point. Hydrogen-bubble pictures 

t See $ 5  for a discussion of the circumstances under which such stable laminar rings 
can be formed. 

2 F L M  51 
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(figure 2, plate 1) to be described in detail later, showed that the dyed sheets 
were not regions of concentrated vorticityt (Magarvey & MacLatchy 1964), but 
that the vorticity was distributed throughout the moving fluid body. As the ring 
moved away from the hole, the dye indicating the stagnation point disappeared 
and the ring grew in diameter with clear fluid in the central hole of the torus. 
This sequence has already been reported by Okabe & Inoue (1960) in an obscure 
location, while Batchelor (1967) has reproduced it for a wider audience. Figures 
3 (a), (b ) ,  (c) (plate 2) are photographs of the later stages of development of such 
a ring. Prandtl & Tietjens (1934) interpreted the dyed region to be the limit of 
the irrotational fluid which was moving with a thin vortex core (figure 3(a) ) .  
By introducing the dye into the path of the moving ring we can see that this 
statement is incorrect and produce the photographs shown in figures 3 (b) ,  (c) 
(plate 2). It is evident that the fluid volume moving with the ring$ is considerably 
larger than the old dyed region and that new$uid from upstream is being entrained 
into the reur of the bubble.$ It rolls up around the old ring and pushes the boundary 
of the moving fluid outwards. The new dye also shows that a stagnation point 
still exists but that it has been moved forward from its original location. Measure- 
ments show that the ratio of maximum bubble diameter to length in the axial 
direction is constant to within experimental error. Thus the bubble has a similar 
shape as it propagates, even though the ring that was originally dyed is changing 
shape, becoming larger in overall diameter and smallerin cross-section. Figure 4 (a) 
shows a diagrammatic view of the entrainment process. Drawing the streamlines 
for such a flow is difficult because the flow is doubly unsteady. It is translating 
with respect to an observer and the bubble is growing in size as time progresses. 
The first difficulty can be removed by moving along with the bubble. The second 
is harder to resolve. Figure 4 (b )  is an attempt to draw instantaneous streamlines 
for the growing bubble surface. It is clear that the dye ‘streaklines’ are not the 
same as the streamlines for this unsteady flow, and interpretation of the dye 
motion requires great caution. 

Measurements of the bubble’s velocity of translation U show that it decays 
exponentially with distance x1 from the hole (figure 5 ) .  

Since U E dxJdt,  an elementary integration shows that 

u N t-1, 

where t is the elapsed time measured from the imagined start of the motion at  a 
virtual origin at downstream infinity. The latter point may be difficult to under- 
stand but it should be realized that since the velocity varies exponentially with 
distance, it is the one case in which the bubble covers an infinite distance from 
the virtual origin in a finite time. This rather unusual, and apparently unique, 
situation is in contrast to previously studied cases of jets, plumes, etc., in which 
all quantities varied algebraically with distance and the virtual origin was a 
finite distance from the orifice creating the actual motion. 

-f The dyed sheet remained sharp because the diffusion coefficient of the dye particles 
was very small. In  contrast, the vorticity produced by viscous separation a t  the sharp 
edge of the hole underwent viscous diffusion and was quickly smoothed. 

$ We will call this moving volume of fluid a ‘bubble’ in the following sections. 
0 An observation which confirms Reynolds’s (1876) original statement. 
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By introducing the impulse I of the ring and its circulation K ,  measured around 
the circuit shown in figure 9, it  is possible to make several predictions. Assuming 
that I is constant, as it would be if no impulse were lost to a wake, then 

(i) I - Ua3 = const. and hence a - t) ,  while 
(ii) K N Ua - t-3, where a is a characteristic dimension of the bubble. 
Measurements of a(t) (figure 6), from a moving picture sequence, reveal that 

prediction (i) is closely realized. The second prediction is difficult to check directly, 
but its consequences can be observed. We will show in $ 4  that the only way 
for sufficient vorticity to be removed from the bubble, in order to explain (ii), 

Vorticity 
from vori 

fluid from manifold 

L Bubble boundary from 
the unsteady streakline 
pattern of (a) 

FIGURE 4. (a) Diagrammatic view of entrainment by a vortex ring, showing fluid from 
upstream being entrained into the outer regions of the ring. (b )  Diagrammatic view of 
instantaneous streamlines in a frame of reference moving with the mean velocity U of 
the ring. 

is for there to be a continuous rejection of ring vorticity into a wake. Before the 
evidence showing the existence of such a wake is presen-ted, it should also be 
noticed that the velocity U decreases faster than exponentially when it becomes 
small (figure 5). It will also be shown in $4 that this is probably due to the 
cumulative effects of the continuous rejection of impulse to the wake, together 
with the vorticity, and a corresponding decrease in the impulse of the ring. 

Hydrogen-bubble pictures (figures 7 (b),  ( c ) ,  plate 3) reveal the existelice of the 
predicted wake far behind the bubble.? In  the expression for the wake azimuthal 

t Chronologically, the existence of the wake was only suspected and then verified after 
the model developed in 0 4 predicted that such a structure was needed in order to produce 
a dynamically consistent picture. 

2-2 



20 

7 -  

6 -  

5 -  
d 
'fi 4 

3 

m 
If 

T. Muxworthy 

- ,,,,, ;:...I - 

' .' 
# I  

vortex ring 

1 I I I \ I  
0 1 2 3 4 0 5  6 7 

x1 (in.) 

FIGURE 5. Velocity of translation of bubble U versus distance from the hole at  which it 
was formed (zl). All rings except A had an initial Reynolds number less than 600. 

2t- 

0 10 20 30 
t = t ,  + t ,  (see) 

FIGURE 6. a3 versus time t from the virtual origin of the motion. The time t consists of 
two parts. t ,  is the time measured from the start of the real motion at the hole. to is the 
time that must be added to account for the motion between the virtual origin and the 
hole. I n  this case a is the diameter of the ring measured between the centres of rotation 
indicated by the dyed ring. 

. 
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vorticity - au/ayt can be measured directly from the hydrogen-bubble pictures. 
The second term, av/ax,t can be estimated from the measured axial variation 
in zc and the use of the continuity equation. Such calculations show that, even 
for most conservative assumptions, the second term is negligible and that a 
net azimuthal vorticity exists in the wake behind the moving vortex bubble. 
Based on previous knowledge, such a result is quite unexpected, but is needed 
so that a consistent dynamical picture results from all the observations. At this 
point it is not clear how we should further interpret these profiles. However, 
once the theory (of $4)  has been presented we will return to these results and 
in fact show that they support the theoretical model in a very satisfactory way. 

Further evidence in favour of both entrainment and the wake is shown in 
figure 7 (a )  (plate 3). There a vortex ring has been puffed from a reservoir con- 
taining no dye. A vertical curtain of dye, about one or two ring diameters wide, 
was spread four diameters ahead of the exit hole. As the undyed ring passed 
through the dyed region it entrained some dye and dragged still more along in 
its wake. A similar process is shown in figure 3 (a) (plate 2 )  where a red dye blob, 
shown behind and slightly above the centre-line of the blue dye of the ring, has 
been distorted by the flow field of the wake but not entrained. It was originally 
placed a little too far from the path of the ring and was not affected by that part 
of the vorticity which was re-entrained into the bubble. This explanation 
anticipates a fuller discussion of the physical mechanisms a t  work which follows 
after we have commented on the velocity field within the bubble itself. 

Using hydrogen bubbles to observe the velocities within the bubble is not as 
accurate as using them to observe the wake. Substantial axial velocity gradients, 
and associated radial velocities, are present in the former case and make interpre- 
tation of the bubble-line distortions difficult. Several simple approaches were 
tried using figure 2 (a )  (plate 1). All of these showed that vorticity was distributed 
continuously throughout the bubble volume, but that it was not distributed 
linearly with radial distance as required by the theory of Hill’s spherical vortex 
(Lamb 1945) and O’Brien’s (1961) generalization to spheroidal vortices. The 
vorticity distribution showed a distinctly smaller slope close to and a t  the axis 
than near the surface of the bubble. There was no indication that the vorticity 
was concentrated in a thin core, as suggested by the classical model reproduced 
in most text-books. It seems pointless to reproduce graphs showing the ex- 
perimental distribution because the actual shapes are not accurate. We hope to 
repeat these measurements in the future using better techniques. 

Based on these observations, we can now qualitatively describe the dynamical 
processes that we believe are important to an understanding of the flow. Then 
in the following section ($4) we present a theoretical model based on these 
processes and show that it can in fact predict the behaviour of the bubbles. 
The vorticity produced by viscous separation at  the hole initially fills a bubble 
appropriate to the amount of fluid displaced and the impulse applied by the 
plunger motion. Fluid exterior to the manifold is entrained into the bubble 
during its formation; this process is described in more detail in $5,  where it 
plays an important part in determining the stability of the system. As the bubble 

t u and v are velocity components in the axial 2: and radial y directions respectively. 
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moves away from the hole, at a velocity determined by its own self-induction, 
vorticity diffuses away from the bubble surface. Irrotational fluid flowing over 
the bubble surface picks up this vorticity, dissipation occurs and then the fluid 
has insufficient total pressure to flow completely over the bubble. In viscous 
flow over a solid surface, this vortical region would separate from the surface; 
in the present case it does not do so but is entrained into the rear of the bubble 
causing the bubble volume to increase.? Further from the bubble surface, where 
the vorticity has diffused to smaller values, the fluid particles traverse the 
bubble without being entrained and then have sufficient vorticity to be detectable 
as a wake. The shed vorticity accounts for the wake motion, but is far enough 
from the bubble to have little effect on its motion. In  between, one surface comes 
to the rear stagnation point which separates entrained fluid from that which 
can flow over the body. The dynamical processes which decide the exact amount 
of shed vorticity can only come from detailed study of the flow near the rear 
stagnation point and such a study has not been attempted. Thus, we see that the 
velocity of translation is decreasing for several reasons. The available vorticity 
is being spread over a larger and larger bubble volume as time progresses, 
vorticity is being cancelled by diffusion across the axis of symmetry of the bubble 
and vorticity is being lost to a wake. These arguments are purely kinematic 
since the self-induction and hence velocity at  any instant depends only on the 
amount and distribution of the vorticity in the system. This simple model also 
explains why the commonly observed dye ring is a very misleading flow marker 
which can only be used to indicate the velocity of translation of the ring and give 
a measure of the diameter, taken between the centres of rotation. The argument 
hingeson the fact that the diffusion coefficient of the dye particles (smoke particles 
in a ring produced by a cigarette smoker) is very much smaller than the diffusion 
coefficient for the vorticity, i.e. the kinematic viscosity. Thus, initially, as the 
vorticity diffuses away from the dyed spheroid the dye is left behind. Entrained 
fluid wraps around the dyed region and it remains trapped while vorticity is 
more rapidly diffused and convected away. Such a description also explains 
one of the differences between stable buoyant vortex rings produced by a rapidly 
diffusing buoyancy source, e.g. hot air moving in colder air, and a slowly diffusing 
buoyancy source, e.g. brine in fresh water. In  the former case, the buoyancy is 
spread over the whole of the bubble since the heat and vorticity diffuse at 
essentially the same rate and a heated wake is formed. In  the latter case, the 
heavy salty water remains in a thin ring which, although it is unstable, does not 
reach the outside edge of the bubble. A further paper on these aspects of the 
vortex ring problem is in preparation. 

It is important to reiterate that in none of the situations considered did 
the vortex look like the classical thin vortex ring described in the literature. This 
statement was thought to be so controversial that many attempts were made to 
reproduce classical results. In  order to do so, the hole diameter was enlarged and 

7 This process is similar to that described by Turner (1964) except that in his case the 
expansion rate of the bubble was set to agree with experimental observations and could, 
in fact, have been given any other arbitrary value. His flow was inviscid and independent 
of any entrainment ‘mechanism’. 
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the top of the manifold was replaced by a rubber disk which when sharply struck, 
produced a ring of great velocity (an initial Reynolds number of about 20 000),  
with a very thin dyed region.? Superficially, this looked like the thin vortex 
described by the theory. However, detailed dye studies showed that this was 
not in fact so, and that the ‘thin’ ring was carrying a much larger fluid mass with 
it, was entraining more fluid and vorticity was being deposited into a wake all 
the time. It is concluded that thin rings cannot be produced by a generator such 
as ours except, perhaps, under conditions far more extreme than those studied 
here (i.e. at  very large Reynolds numbers). 

Layer into which interior 
77 , vorticity diffuses 

Outer unsteady L v 
potential \- 

of the buinp 

FIGURE 8. Diagrammatic view of the entrainment process which takes 
place at a turbulent interface. 

One of the more important deductions derived from the present observations 
concerns the mechanism whereby turbulent interfaces entrain fluid and a t  the 
same time remain sharp. A turbulent interface is an unsteady corrugated surface 
over which an outer irrotational fluid flows and within which all of the vorticity 
is contained. Within the context of the present experiment one can see that as 
the vorticity diffuses across the interface into the irrotational fluid, the fluid 
thus affected can no longer flow over the surface and will be entrained on the 
backside of a corrugation (figure 8). Of course, the situation is not as clear as 
that for the vortex ring since the surface is both unsteady and three-dimensional, 
and consists of many scales all of which, except the very smallest, are able to 
entrain fluid. The velocity of the outer irrotational fluid, with respect to the 
surface corrugations, is also unknown and it would seem that it will be very 
difficult to put this process on a more quantitative footing. Now, at  least, the 
mechanism of entrainment and sharpening can be understood in a qualitative 
way and may lead to more useful results at a later date. 

4. A theory for stable laminar vortex rings 
A simple dimensional analysis of the flow described in $ 3  does not allow a 

unique determination of the dependence of bubble velocity and size on the 
elapsed time. In  this section, we present a simple mechanistic theory which is 
essentially one step beyond such an analysis. The required addition is to model 
the entrainment of new fluid into the moving region of vorticity (figure 9(u) ) .  

t This is the method originally used by P. G. Tait to demonstrate vortex ring phe- 
nomena to Lord Kelvin and resulted in the latter’s development of the ‘vortex-atom’ 
theory of the properties of materials. 
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We are then able to determine the dependence of the size of the region on time. 
Three basic assumptions are required. The first is that the bubble remains similar 
at  all times, so that the constants of proportionality which are introduced do 
in fact remain constant. The second requires that the vorticity be continuously 
distributed throughout the bubble, while the third requires that, initially at  
least, no vorticity be shed into a wake, with the consequence that the impulse 
of the ring remains constant. From this model we determine an inconsistency 

FIGURE 9. Entrainment model of a homogeneous vortex ring, where t‘ is B measure of the 
time it takes a particle to traverse the distance from the front stagnation point to the 
region of entrainment. (a )  A fh t  model with no wake and all diffused vorticity entrained. 
( b )  A second dynamically consistent model in which some vorticity is deposited into a 
wake and some entrained back into the ring. 

which can only be resolved by allowing the existence of a wake into which ring 
vorticity can be deposited (figure 9(b)). At this point it is critically important 
that the role of the bubble impulse? is correctly interpreted. The total impulse 
imparted to the system cannot change (Batchelor 1967, p. 520). Initially, it is 
all contained within the bubble. As time progresses and vorticity is placed in the 

t The impulse is given by &pSx x w d v ;  where x and w are the position and vorticity 
vector respectively, and dv an element of volume. In  principle, the integral is taken over 
the whole fluid, but it obviously need only be taken over the region where there is vorticity. 
This impulse applied t o  a limited fluid volume generates the whole of the fluid motion from 
rest. 



The structure and stabiZity of vortex rings 25 

wake, the total impulse is shared by both the bubble and the wake. The impulse 
responsible for the bubble motion is continuously decreasing while that re- 
sponsible for the wake motion is continuously increasing.t However, it is possible 
to show that the assumption of constant bubble impulse is still satisfactory when 
the Reynolds number of the bubble is large and the elapsed time short. Ultimately, 
the loss of bubble impulse becomes important and invalidates our simple model, 
but this occurs only after a long time and after the Reynolds number has de- 
creased to small values. 

We start the detailed analysis by reference to figure 9(a) ,  which shows the 
entrainment process diagrammatically. As the vorticity diffuses from the bubble 
interior, it contaminates a thin layer of initially irrotational fluid, dissipation 
occurs, the total pressure in the layer is slightly reduced and it is unable to 
traverse the bubble contour. As a result, the layer is entrained into the bubble 
interior bringing the diffused vorticity with it. At the point where the layer is 
entrained into the bubble, it has a thickness 8, = Cl(vt’)* and velocity C, U ,  where 
t’ = Cza/U is the time for a particle to traverse the distance around the bubble 
and v the kinematic viscosity of the fluid. The circumference of the entrained 
region is C3a. Thus, the rate of change of bubble volume V equals the amount of 
fluid entrained per unit time, 

d V / d t  = ClC,C,aU(vt’)4 

= cv*a+u*, (3) 

where C = ClC3C,Cj. The impulse is constant and given by 

I = aKa2. (4) 

The velocity of propagation is given by 

U = pK/a = /3I/ad, 

d V / d t  = A(vI)* = constant, 

( 5 )  

where a and /3 are constants which depend on the bubble shape. Substituting into 
(3) gives finally 

(6) 

where A = C(C2/3]a)*. Integration of ( 6 )  gives 

v = Ba3 = A(vI)&t+D,  (7) 

where B is another shape dependent constant. The constant D is evaluated by 
using the initial condition that V = 0 when t = 0, so that D = 0. It then follows 
that 

and 

This result agrees with the measurements of U ( t )  and a@). Thus in order to 
maintain the impulse constant, the observed increase in a is accompanied by 

7 Note that once the impulse (vorticity) has entered the wake it still has some effect 
on the motion of the bubble; this effect becomes small beyond about one diameter from 
the bubble. 
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decrease in K as distinguished from previous models. It is now necessary to find 
a consistent mechanism to explain this decrease. Within the present model, the 
only place that it can occur is at  the axis of symmetry. There the vorticity is 
diffusing and cancelling over a region which has a width O(6,) and a length O(a) 
(figure 9 (a)).  Within this region the vorticity is 0{( U/a)  (8Ja)). Thus, the circula- 
tion cancelled by diffusion within the small circuit AK is 

The time over which this loss takes place is O(a/U) ,  so that 

dK - N - - N  US?iU (:)* N t-0 
dt a a 

or K N t-+, (9) 

which does not agree with the result found from the entrainment model. The 
same result is found using an equation given by Saffman (1970) for the change 
in circulation close to the centre-line 

at 

dK/dt N aU/a2 N t-$, Substitution gives 

where w is the vorticity and y distance from the centre-line. We are thus faced 
with a dilemma which can only be resolved by increasing the internal vorticity 
gradients (which are not observed) or by allowing the vorticity to be convected 
out of the bubble and for the diffusion and cancellation to then take place over 
a much longer distance, i.e. in a wake. As already mentioned, the main difficulty 
in allowing such a structure is to explain how the assumption of constant impulse 
still describes the flow even though the bubble impulse is left behind in the wake. 

We now turn to the revised model shown in figure 9 ( b ) .  The entrainment 
argument proceeds as before and gives the same results although the constants 
may have different values. Now, however, we allow some vorticity of O(U/a)  
and its associated circulation to be shed into a wake of width 6, from a thin 
layer of width a,( = C,(vt’)+). Thus the rate of change of circulation is given by 

which is now consistent with the results of the entrainment model. This circula- 
tion in turn is deposited into the wake where it ultimately diffuses and cancels 
over a length I ,  so that by applying (10) to the wake region, we find 

dK/dt N vlw/y. (13) 

It seems reasonable to suppose that, since the curl of the vorticity (wly)  is 
coming from vorticity deposited into the wake from the outer regions of the 
bubble, 

w/y - Ula2. (14) 
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Thus from (12), (13) and (14), 

1 N a(Ua/v)* = aRB, 

where R is the bubble Reynolds number Ualv. 
Associated with the deposition of vorticity is a deposition of impulse into the 

wake which in turn results in a small decrease in the impulse of the bubble alone. 
We calculate the characteristics of the wake under the assumption that the 
bubble impulse is constant, a procedure which can only be valid while the 
accumulated wake impulse is small. Comparison with the experimental results 
suggests that this is a reasonable approximation for high ring velocities and 
short times after ring formation. 

The increment of impulse (AI,) residing in a short section of the wake of 
length AX is given by 

AIw N AX wy2dy; (15) s,"' 
where w comes from equation (14). Substitution of (14) into (15) followed by 
integration and taking the limit AX + 0 yields 

dI&x N U&i/a2. 

Assuming that 8, N aR-", as suggested by the solution to the related problem 
of an immiscible fluid bubble moving in another fluid (Harper & Moore 1968), then 

dIwldx N Ua2/R4". (16) 

The impulse found in the wake has been shed from the bubble. By using an 
argument that is virtually identical to that used to calculate the shedding of 
vorticity into the wake, we can find the amount of impulse left in the wake 

di,/dx N vtUta8 N U+I* = aonstant. (17) 

Comparison of equations (16) and (17) shows that 

n = 1  8 '  

Equation (17) can be integrated to give 

I, = I,, + bv*Ih,, (18) 

where I, is the total impulse residing in the whole of the wake to the point x,; 
I, is the wake impulse up to the hole itself and b a constant. Since the real bubble 
was actually formed at the hole, i.e. x1 = 0, it  starts out with the given impulse, 
I ,  and no wake, so that I,, = 0. Thus, after the bubble has travelled a distance 
x1 = ma then, 

which is small when R is large and m is small. It is suggested that this loss of 
impulse to the wake accounts for the departure of the measured values of log U 
VerSUS x, (figure 5 )  from a straight line when m has become large and R small. 
It is also possible that at  such low values of R the boundary-layer approach used 
here becomes invalid and also contributes to the departure from the proposed 
model. 

Iw/I N mlRB, (19) 
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Unfortunately, the proposed model has a rather limited range of applicability. 
It cannot be a correct dynamical description of the flow between the virtual 
origin and x1 = 0 because the wake impulse is negative and actually approaches 
- co as x1 3 - 00. However, we force this imagined bubble to pass x1 = 0 with no 
wake impulse and the correct values of I ,  K ,  a and U.  For a short distance, it is 
a good description of the real flow because as we have shown, the loss of impulse 
from the real bubble should be small and our constant impulse model agrees 
with experimental results. After some time has elapsed, however, the accumulated 
loss of impulse from the real bubble becomes too great and the model is no longer 
adequate. A correctly formulated model should take this loss into account, but 
such an effort is beyond the scope of this paper. 

Figure 7 ( b )  (plate 3) presents verification of one more piece of this picture. 
Our simple theory predicts that dI,/dx = constant, so that in each small section 
of the wake, of length A X ,  the increment of impulse is thesame. Formation of 
the integral 

for each of the velocity profiles of figure 7 (b)  shows that AIw is the same for 
each, to within 15 % . Such a variation is well within experimental error for the 
hydrogen-bubble method used at such low velocities ( N 3 mm/sec). 

Of passing interest is application of these ideas to a two-dimensional line 
vortex pair for which we find 

This result has obvious applications to the motion of the trailing vortices behind 
aircraft which could eventually interact in the way suggested here. It is also 
possible to predict the linear growth of buoyant vortex rings; this subject is to 
be reported in a subsequent paper. 

5. Stability of vortex rings 
When a circular ring of organized vorticity was puffed from the hole several 

possible histories could result depending on its initial size and velocity, i.e. 
Reynolds number, R, = Uouo/v.~ 

At low R, the motion was stable and the ring continued with a circular shape 
until it reached the end of the test tank (these were the rings studied in $$3  and 4). 
At R, 5 600 the circular bubble developed an azimuthal waviness with five peaks 
and five troughs (figures lO(a), plate 4). This waviness persisted more or less 
steadily while dye, and hence vorticity, $ was dragged from the peaks and into 
the wake (figure lo@)). The velocity of the ring decreased rapidly during this 

t In this case, I is the impulse per unit length of the vortex pair. 
$ Where U,  is the initial velocity of translation and is of order Kla,; a, is a representative 

8 Since we have shown that the region of vorticity is outside and includes the dyed 
length for the bubble (in this case its maximum diameter). 

region, when dye is left behind vorticity must be also. 
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process and no turbulence was observed. For slightly higher values of R, the 
wavy structure collapsed into a turbulent blob and the vorticity was effectively 
cancelled by turbulent diffusion. At still higher values of R, ( 2 10s) a new and 
more unexpected phenomenon appeared. The initial flow became unstable and 
broke into a turbulent motion which persisted for a short time. From this 
apparently disorganized vorticity field, a new vortex ring was formed (figure 10 (c) 
plate 4). It was larger than the original ring and moved at a slower rate. Curve A 
of figure 5 shows the velocity history of such a ring.? Considerable amounts of 

(b) - 

FIGURE 11. Ring formation a t  a sharp-edged orifice, showing production and convection 
of vorticity of the opposite sign ( -  ) to that in the main body of the ring (+ ). (a) During 
outflow from the orifice. ( b )  After outflow has ceased and the bubble is beginning to close off. 

dye and vorticity were left behind and redistributed during the breaking-up 
process and the state reached was apparently appropriate to a bubble of smaller 
initial Reynolds number. 

Observations of the rings produced from the apparatus fitted with the rubber 
‘drum-head’ showed, in fact, that the large rapidly moved rings were produced 
from such a mechanism. The original vorticity field emerging from the hole 
immediately broke up and the new stable vortex was born from this process. 
Large quantities of dye (and vorticity ) were ejected radially outward from the 
nascent ring and were left behind. Evidently, such a simple ring is a poor device 
for transporting dye (pollution) to large distances. The new vortex had a Reynolds 
number of several thousand (typically 2 x lo4) but was stable, whereas the vortex 
produced immediately at  the hole became unstable for R, 2 600. One immediately 

f Krutzsch (1939) shows that the stable rings formed from the initial instability also 
have velocities which decay exponentially with distance and are therefore described by 
the theory of $4. 
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suspects that the actual vorticity distribution produced by flow out of the sharp- 
edged hole is different and in some way more unstable than that produced after 
break up and reformation. The accuracy required to make this determination 
quantitatively can only come from better techniques than those used here and 
has not yet been attempted. However, it is possible to perform simple tests based 
on intuitive guesses about the mechanisms responsible for the instability. Simply, 
with the centre body (figure 1 (c)) in place, out-flow from the hole creates a core 
of vorticity of opposite sign from that of the main vortex ring. This vorticity is 
transported to the outside of the ring where it forms a layer which is unstable 
because the square of the circulation decreases rapidly outwards (Rayleigh’s 
criterion). Under conditions which previously produced a stable vortex flow 
with no centre body the motion now became violently unstable, considerable 
vorticity was shed, and a new stable vortex emerged from the unstable region 
(figure 3 ( d ) ,  plate 2-f). It is suggested that in the process of forming a simple 
vortex ring (i.e. no centre body) vorticity of the opposite sign is created at  the 
outside wall of the plate and this is swept into the vortex to ultimately create 
an unstable layer on the outside of the ring. The process is illustrated in figure 11. 
The photograph in figure 12 (plate 5) shows how the fluid from the wall and from 
the interior wrap around each other during the formation process and how the 
final process, by which the bubble is pinched off and leaves the neighbourhood 
of the wall, produces an outer layer which has opposing vorticity. The production 
of positive vorticity has ceased while the production of negative vorticity has 
not, since it is created by the motion of the vortex itself. 

6. Interaction between two vortex rings 
Since the present results lead one to suspect all the previous statements on 

single vortex rings, it seems proper to examine what really happens when two 
rings interact with one another. Current belief is contained in Sommerfeld (1950), 
for example, who devotes two pages (pp. 164-165) to a discussion of the possible 
interaction between two similar vortices moving along a common axis of sym- 
metry. Owing to their mutual interaction, the rearward ring becomes smaller and 
moves faster while the forward one becomes larger and moves slower. The former 
can then pass through the latter. Thereafter, their roles become reversed and 
they oscillate back and forth through each other. Batchelor (1967, p. 524) states 
that “it  is possible to demonstrate in the laboratory one or two such passages 
of one vortex through the other before they decay”. The present author has been 
unable to repeat this experiment and, in fact, found results which did not agree 
with the textbook descriptions. 

When two rings, of similar strenth, and R, less than 600, were puffed into the 
aquarium (figure l), the rearward one became distorted by the velocity field 
(including the wake) at the forward one and squeezed into it through the rear 
stagnation point. It then wrapped itself around the inner ring to form a single 
large vortex. This sequence is shown in figure 10 (d)  (plate 4). When the velocity 

t Note the similarity to the unstable flow produced by flow out of the open hole 
(figure 1O(c), plate 4). 
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of the following ring was made larger than the leader, its entry caused the com- 
bined ring to execute longitudinal vibrations. Still larger velocities caused the 
combined ring to rip apart with a faster ring going ahead leaving a slower ring 
behind. It seemed as though the preceding ring actually gained some vorticity 
from the encounter because the trailing ring was moving dower than before. 
Evidence from analysis of moving picture sequences bears out this statement, 
but the exact amount of gain is hard to determine and then relate to the initial 
parameters. 

The entrainment mechanism also explains the behaviour of interacting rings 
under other circumstances. When two rings were puffed out simultaneously 
along parallel paths they grew unaffected by each other until they just touched. 
Then any slight initial asymmetry caused one of the rings to entrain the closest 
edge of the other. The vorticity within these opposing regions was rapidly 
cancelled by diffusion over a thin region forming a single distorted ring which, 
under the action of its own induction, usually broke up into a turbulent blob, 

T. Fohl (private communication) has projected rings a t  one another at  various 
angles and found one very curious result. If the rings originally approached in 
one particular plane (the x, y plane for example, where the x direction is the 
average direction of motion of the two rings) they interacted and departed a t  
approximately the same angles but in the x, x plane, i.e. a plane at  right angles 
to the original. An explanation in terms of the entrainment model is quite easy. 
When they touch, the vorticity in each ring is cancelled locally, by the entrain- 
ment and subsequent diffusion, and leaves a single distorted ring. This ring, 
under the action of its own velocity field, distorts very rapidly to a new shape. 
The distortion is violent enough to cause the combined ring to split apart into 
two new rings moving in the observed directions. 

7. Conclusions 
From observations of the vortex rings produced by a simple generator, it has 

been found that stable rings exist in two ranges of initial Reynolds number (R,). 
When R, 5 600 the ring is stable during the whole of its motion. When R, 2 1000 
the ring first of all becomes unstable, but out of the disorganized flow so formed, 
a new stable vortex emerges. Rings with very large R,( N 2 x 104) become un- 
stable immediately after they are formed. The stable ring which emerges leaves 
behind most of the dye originally ejected from the generator. Such stable rings 
have several features not found in the usual text-book descriptions. Vorticity 
is spread throughout the body of fluid which moves with the dyed ring. The 
moving body of fluid is continuously entraining new fluid from outside and 
growing in volume, at  the same time it is depositing its own vorticity into a wake. 
The present results, and those of Krutxsch (1939), show that the velocity of 
propagation of such stable rings varies exponentially with distance. A simple 
viscous entrainment model, in which the impulse of the moving fluid body 
remains constant, can describe most of the features of the observed flow. It 
only becomes inadequate after the impulse which is being shed continuously 
into the wake accounts for an appreciable fraction of the initial impulse of the 
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ring. For the intermediate range 600 5 R, 5 1000, the vortex rings become un- 
stable in a laminar fashion at  the lower end of the range and as a disorganized 
turbulent region at the upper end. When two rings of closely similar velocity are 
moving along the same path, they do not pass through one another, as has been 
extensively reported, but the rearward one becomes entrained into the forward 
one to form a single large vortex. When the rearward ring has a larger velocity 
than the forward one, the combined ring becomes distorted and two rings can be 
reformed by the severance of vortex lines. The forward ring is now the faster 
and moves away from its mate. 

A moving picture film has been produced to demonstrate the processes put 
forth in this paper. It is available on request to interested readers. Many fruitfut 
discussions with Dr P. G. Saffman of the California Institute of Technology and 
Dr D. W. Moore of Imperial College are gratefully acknowledged. In  fact, it was 
they who originally pointed out the fundamental role played by the wake and 
the similarity to the flows over liquid spheres studied at  length by Harper & 
Moore (1968). Mr P. D. Weidman helped with the experiments and discussions 
with Mr E. J. Hinch helped formulate the theoretical problem. This work was 
supported at  the University of Southern California by the National Science 
Foundation through Grant GK2731 and at  the Woods Hole Oceanographic 
Institution during the 1970 Geophysical Fluid Dynamics Programme. The 
generosity of Dr W. V. R. Malkus in providing a salubrious heme during this 
latter period is gratefully acknowledged. 
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